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[all along this paper, PF is used for Philippe Flajolet]

PF fell in love with continued fractions around the year 1978 (paper [1]) when he discovered a general method-
ology for analyzing the cost of algorithms on a file, integrated on a sequence of primitive allowed operations
(insertions, deletion, queries), once the average costs on single operations are known. The amazing connection
resounds like a thunder in the sky of combinatorics and classical analysis, and a “coup de foudre” for PF. Analytic
continued fractions theory was put at the combinatorial level with a beautiful interpretation in terms of certain
weighted paths (the so-called Motzkin paths). This interpretation is described in the famous seminal paper [6].
Combining this interpretation with some combinatorial bijections between classical combinatorial objects and
these weighted paths leads PF to a fireworks of combinatorial proofs of many classical developments of power
series into continued fraction in connection with special functions (papers [6], [10], [12], [13]), together with the
explicit computation of integrated costs for some classical data structures such as lists, priority queue, dictionary,
each corresponding to classical orthogonal polynomials (Hermite, Laguerre, Charlier, . . . ). (papers [3], [4], [7],
[8], [9], [11]).

In the last few years of his life, PF came back to the subject with deep results about continued fractions
related to elliptic functions [16], [17]. The connection with combinatorics opens many deep and new questions
and probably PF was feeling the same excitation about opening a new field of researches, as he was doing in the
blessed year 1978. The astonishing and very deep new continued fractions appearing in his two Happy New Year
cards for 2009 and 2010 underlie this promising and unachieved period.

Another loved area of PF is stochastic processes (urn models, birth-and-death, . . . ) and PF made fruitful
connections between combinatorics and probability theory (papers [14], [16]), underlying the following quotation
from [15]: “Discrete and continuous mathematics willingly and harmoniously encounter and complement”.

There are two main concepts through these 16 papers: weighted Motzkin paths and the concept of histories.
This last concept is basic for the integrated cost analysis: an history is the exact sequence of primitive operations,
together with some additional information about the “position” of the key which is added, deleted, or questioned,
of the data structure. The same idea of histories underlies the bijections interpreting various expansions of power
series into continued fractions. The bijections are combinatorial constructions, which are sequences of primitive
operations, acting on some combinatorial objects, where the operations are performed on a certain position. The
number of possible positions corresponds to the weight of the related elementary step in the path. Such sequences
of operations are also described in urn models. In quantum mechanics, creation and annihilation operators, are
very similar to the operations of add and delete a ball in the urn process, or add and delete in a priority queue. These
two operators satisfy the well known quantum mechanics commutation relation UD = DU+I (Weyl-Heisenberg
algebra), which is the starting point of the paper [18].
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1 Continued fractions before PF

A classical example of (arithmetic) continued fraction is the expansion of the golden ratio φ

φ− 1 =
1

1 +
1

1 +
1

1 + . . .

When truncating this continued fraction at level k, one gets a rational fraction as the quotient of two consecutive
Fibonacci numbers Fk/Fk+1. This ratio is called the k-th convergent whose limit is φ− 1.

Continued fraction expansions of numbers are implicit in the Euclidian algorithm and are important in giving
rational approximation of real numbers. They are implicit since the beginning of science in many ancient civiliza-
tions, Greek, Indian and Chinese. For example, the approximation of π by the rational 355/113 appears in China
in the 5th century, and is in fact the third convergent of the expansion of π into continued fraction.

Continued fractions have been used to prove the irrationality properties of number such as π (Lambert in 1766
) or more recently by Apéry for proving the irrationality of ζ(3) by using the following representation:

ζ(3) =
6

ω(0)−
16

ω(1)−
26

ω(2)−
36

. . .

with ω(n) = (2n+ 1)(17n(n+ 1) + 5).

Such continued fractions are also called arithmetic continued fraction, in contrast with the continued fractions
making the subject of this chapter, that is analytic continued fractions. Such fractions contain a (real or complex)
variable and give the expansion of a function in term of continued fraction. Here, with PF we consider the variable
to be a formal variable, and the function is in fact a power series. The convergence is at the formal level. The
pioneer work on analytic continued fractions is due to Leonhard Euler, who introduced several expansions of
power series such as [41]:

∑
n≥0

(n+ 1)!zn =
1

1− 2z −
1 · 2z2

1− 4z −
2 · 3z2

. . .

1− 2kz −
k(k + 1)z2

. . .

. (1) and
∑
n≥0

1 · 3 · 5 · · · (2n− 1)zn =
1

1−
1z

1−
2z

. . .

1−
kz

. . .

. (2)

The general theory of such continued fractions was mainly developed by Stieltjes in his memoir [55]. These
continued fractions are particular case of the so-called Jacobi continued fraction or J-fractions, i.e., fractions of
the following form
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∑
n≥0

µnz
n =

1

1− c0z −
λ1z

2

1− c1z −
λ2z

2

. . .

1− ckz −
λk+1z

2

. . .

(3)

where {ck}k≥0 and {λk}k≥1 are two sequences of “coefficients”, which can be integers, real or complex numbers
or more generally “formal variables” of two infinite alphabets. In many examples, it will be polynomials with
integer coefficients in some “formal variables” or “parameters” (α, . . . and q for “q-analogs”).

Most of PF ’s work on continued fraction is concerned with analytic continued fractions (this chapter), but
also with some considerations with arithmetic continued fraction, see papers [26], [27]. Nevertheless, the two
apparently distinct domains are related. For example the Apéry continued fraction for ζ(3) with cubic and sextic
terms appears in the paper [16] and has some intriguing similarity with the expansion of Dixmioninan functions
into continued fractions with cubic denominator and sextic numerators.

2 The fundamental Lemma of PF on continued fractions

The fundamental combinatorial (or geometric) interpretation of J-continued fraction is the main theorem of the
seminal paper [6], which we propose to call “The fundamental Lemma of PF”.

We define a Motzkin path as a sequence of vertices (s0, . . . , sn) of the square lattice N × N , satisfying the
following conditions
- s0 = (0, 0), sn = (0, n)

- each elementary step (si, si+1)0≤i<n is of 3 possible types: North-East (NE), South-East (SE), East (E) corre-
sponding respectively to si+1 = si + (x, y) with (x, y) = (1, 1), (1,−1), (1, 0).
Three sequences of “coefficients” or “letters” from 3 alphabets are given: (ak)k≥0, (bk)k≥1, (ck)k≥0. We define
the weight v(ω) of a Motzkin path ω as to be the product of the weight of its elementary steps, where the weight
of a NE (resp. SE, resp. E step) starting at height k is ak (resp. bk, resp. ck ).

An example is displayed on Figure 1, v(ω) = a20a1b
2
1b2c0c

2
1.

Figure 1: Weighted Motzkin path
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Denote by |ω| the length of the path ω, i.e., the number of elementary steps. Then the PF fundamental Lemma

(paper [6]) gives an interpretation of the general J-fraction as the generating function of weighted Motzkin paths:

PF Fundamental Lemma on continued fractions

∑
ω:Motzkin paths

ν(ω)z|ω| =
1

1− c0z −
a0b1z

2

1− c1z −
a1b2z

2

. . .

1− ckz −
akck+1z

2

. . .

. (4)

In different talks and papers such as [16], PF calls his main theorem with some ironic adjective, referring to the
way a colleague welcomes this proposition. I propose here in this introduction to lift it at the level of a “Lemma”
in the sense used in chapter 29 the beautiful book of Aigner and Ziegler “Proof from the BOOK” [31]:

“The essence of mathematics is proving theorems - and so, that is what mathematicians do: They prove

theorems. But to tell the truth, what they really want to prove, once in their lifetime, is a Lemma, like the one by

Fatou in analysis, the Lemma of Gauss in number theory, or the Burnside- Frobenius Lemma in combinatorics.

Now what makes a mathematical statement a true Lemma? First, it should be applicable to a wide variety

of instances, even seemingly unrelated problems. Secondly, the statement should, once you have seen it, be com-

pletely obvious. The reaction of the reader might well be one of faint envy: Why haven’t I noticed this before?

And thirdly, on an esthetic level, the Lemma - including its proof - should be beautiful!”

It is immediate from the fundamental Lemma that the k-th convergent Jk(t) of the Jacobi continued fraction
(4) is the generating functions of weighted Motzkin paths bounded by height k

∑
ω:Motzkin paths

height≤k

ν(ω)z|ω| =
1

1− c0z −
a0b1z

2

1− c1z −
a1b2z

2

. . .

1− ckz

. (5)

In the case ck = 0 for all k ≥ 1, i.e., the paths are Dyck paths, the continued fraction (4) is called Stieltjes
continued fraction or S-fraction.

Many known expansions of functions or power series into continued fractions can be proved combining PF
fundamental Lemma with some combinatorial constructions. The coefficients of the power series are interpreted
by some weighted combinatorial objects. Some weighted histories (see sections 4, 5) are related to the continued
fraction, and a weight preserving bijection between these objects and these histories will give a combinatorial
proof to the continued fraction expansion using PF fundamental Lemma. Such combinatorial proofs are also
related to the combinatorial theory of orthogonal polynomials.
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3 The classical correspondence between
analytic continued fractions and orthogonal polynomials

First let us recall the classical definition of (formal) orthogonal polynomials. We consider the algebra K[x] of
polynomials in one variable x and with coefficients in a commutative ring K. In the classical theory of orthogonal
polynomials, K is the field R of real numbers, with sometimes extension to complex numbers C. Here everything
is done in a formal way, and for combinatorial purposes, very often K is the ring Z, Q or the ring of polynomials
in some formal variables α, β, . . . (the “parameters”) and q (for q-analogues).

A sequence {Pn(x)}n≥0 of polynomials of K[x], each Pn(x) being of degree n , is said to be a sequence
of orthogonal polynomials if and only if there exist a linear functional f : K[x] → K such that for every
k, l ≥ 0, k 6= l, f(PkPl) = 0 , and for every k ≥ 0 , f(P 2

k ) 6= 0.
In general, for a linear functional there exist, up to a multiplicative factor, a unique sequence of orthogonal

polynomials, and conversely, the linear functional f is uniquely determined by the sequence {Pn(x)}n≥0, up
to a multiplicative factor. The linear functional f is uniquely determined by its value on the monomial basis:
f(xn) = µn, n ≥ 0. The µn are called the moments of the orthogonal polynomials.

In classical analysis, the orthogonality is defined by a certain (Stieltjes) integral involving a certain measure∫ b
a
Pk(x)Pl(x)dψ. But in this chapter the essential point of view is in a formal way, in a similar way to the book

[33] of Chihara. But for applications, moments can be put into integral form and parameters and variable can be
real numbers.

For a given sequence of moments {µn}n≥0, there exist orthogonal polynomials related to such moments if
and only if the so-called Hankel determinants ∆n are non zero for every n ≥ 0. These determinants are defined
by the following: the term (i, j) of the determinant ∆n is µi+j .

A main classical theorem on orthogonal polynomials theory is Favard theorem, which we state in its formal
way. A polynomial of degree n is monic if the coefficient of xn is 1.

(formal) Favard theorem
Let {Pn(x)}n≥0 be a sequence of monic polynomials of degree n with coefficient in K. This sequence is a

sequence of orthogonal polynomials if and only if there exist two sequences {ck}k≥0, {λk}k≥1 of coefficients in
K such that the polynomials satisfy the following 3-term linear recurrence

Pk+1(x) = (x− ck)Pk(x)− λkPk−1(x), k ≥ 1. (6)

In the classical theory, there are two relations between continued fraction and orthogonal polynomials.
The generating function of the Jacobi continued fraction J(t) defined by the coefficients {ck}k≥0 and {λk}k≥1

as in (3) is exactly the power series
∑
n≥0 µnz

n, generating function of the moments µn associated with the
orthogonal polynomials {Pn(x)}n≥0 defined by the 3-term linear recurrence (6). Moreover, the convergents of the
Jacobi continued fraction J(t) are the following rational fractions δP ∗k (z)/P ∗k+1(z), where P ∗k (z) = zkPk(1/z)

denotes the reciprocal of Pk(x) and
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δPk(x)k≥0 denotes the “shift” of the sequence {Pk(x)}k≥0, i.e., orthogonal polynomials obtained from
the 3-term recurrence relation (6) by replacing the sequences {ck}k≥0, {λk}k≥1 respectively by {ck+1}k≥0,
{λk+1}k≥1.

Thus, combining the classical analytic theory of orthogonal polynomials and continued fractions with PF
fundamental Lemma, we deduce that the nth moment of the most general sequence of orthogonal polynomials
defined by the 3-terms linear recurrence relation (6) is the sum of the weights of Motzkin paths of length n:

µn =
∑
|ω|=n

Motzkin paths

ν(ω), (7)

where the weight of the Motzkin paths ω is defined (with the notations of section PF Lemma) by the 3 sequences:
for NE steps {ak = 1}k≥0, for SE step {bk = λk}k≥1 and for E step {ck}k≥0.

4 Histories and continued fraction: the toy example with Hermite histo-
ries

Applying PF’s fundamental Lemma, a combinatorial or “bijective” proof of Euler’s identity (2) is obtained by
establishing a bijection between chord diagrams and the so-called Hermite histories of length n defined below.

Figure 2:

A chord diagram is a set of n arcs joining two by two 2n points (or perfect matchings of the complete graph, or
involutions without fixed points). They are enumerated by the product 1.3. · · · (2n− 1) interpreting the left hand
side of the identity (2). The right hand side is interpreted by a “Hermite history”, i.e., a pair h = (ω, f) where
ω = (ω1, . . . , ω2n) is a Dyck path with elementary steps ω1, . . . , ω2n and f = (p1, . . . , p2n) (the possibilities
function, also called choice function) is such that pi = 1 when ωi is a NE step, else 1 ≤ pi ≤ ν(ωi) = bki where
ki is the height of the starting point of the step ωi.

As explained in the introduction, the name “histories” refers here to the idea of a sequence of operations
corresponding to the sequence of NE or SE steps of the Dyck path, each operation being performed on certain
combinatorial objects with a certain number of possible choices. Here a NE step (↗) corresponds to “open” a
new chord, a SE step (↘) corresponds to “close” a chord with the possible “open” chords waiting to be closed.

Figure 3:
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Figure 3 is a visualization of the beginning of a Hermite history h = (ω, f) with ω = (↗,↗,↗,↗,↗
,↘,↗,↘,↘, . . . ) and f = (1, 1, 1, 1, 1, 3, 1, 4, p9, . . . ). The ki possible choices for closing a chord are here
numbered from left to right. Here, at this 9th step, there are 4 possible values for p9.

In the context of the PF’s work on Polya urns, exactly the same toy example of Hermite histories appears in
relation with the following elementary rule: one can add a ball (NE step), or take by random a ball from an urn
containing k balls, with k possible choices (SE step). This corresponds exactly in the context of PF’s work on
integrated cost of data structure to the structure of priority queue: adding a key anywhere in a k-elements file
(with k + 1 possibilities) and deleting the minimum (with 1 possibility). In fact the sequence of such primitive
operations in a priority queue, with its possibilities functions, would correspond to the mirror image of a Hermite
history.

Such add and delete primitive operations satisfy the commutation relation UD = DU + I , developed in the
paper [18].

The name Hermite histories refers to the Hermite orthogonal polynomials, whose relation with continued
fractions was explained in section 3. From that section, the moments of the Hermite polynomials become the
number of Hermite histories. PF used the term “system of paths diagram”. In subsequent papers, many other
“systems of paths diagram” have been introduced, corresponding to different valuation of the Motzkin paths. The
name “Hermite histories”, together with other terms corresponding to other orthogonal polynomials, “Laguerre
histories”, “Charlier histories”, seem to be used to distinguish between all these systems of paths diagram.

Also, in many papers (see for example [37], [58]), once an integer valuation of the paths is given and gives rise
to histories related to this valuation, one needs to consider weighted histories with usually two kind of weights:
the q-analog, and the “alpha valuation”.

5 Weighted histories and q-analogs

The simplest q-analog is done by giving a weight qpi−1 when the possibility function is pi. The weight of the
Hermite history is the product of the weight of each pi corresponding to each elementary step. Through the above
bijection between chord diagrams and Hermite histories, the qweight of the history corresponds to the classical
parameter “nesting” on chord diagrams. If one reverse the convention of labeling the possible choices (open
chord) for closing a chord from right to left, instead from left to right as described above with figure 3, then one
gets as q-parameter on chord diagrams the classical parameter “number of crossings”. Thus we get the well known
fact that the parameters “nesting” and “crossing” have the same distribution on the set of chord diagrams. This
is an illustration of the power of this concept of “histories” underlying most of the papers of this chapter. Such
a parameter “number of crossings” for chord diagrams was already considered in a pioneer work by Touchard
[56] where he established the following continued fraction for its generating function, q-analogue of the Euler
continued fraction (2)

1

1−
[1]qz

1−
[2]qz

. . .

1−
[k]qz

. . .

, (8)
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where [k]q = 1 + q + · · ·+ qk−1.
In the correspondence between continued fractions and orthogonal polynomials, these q-valuations give a

certain q-analog of Hermite polynomials.
In a very similar way, some q-analog of Euler continued fraction (1) can be defined, leading to some q-analog

of Laguerre polynomials defined in the paper [11] about integrated cost of simple list structures. Here, the weight
qpi−1 for the choice pi of the history is exactly the cost the primitive operation.

A second elementary idea to put weight on Hermite histories is to put a weight α each time in the above
bijection it is the first position (or the last) which is chosen when closing the chord. This corresponds to replace the
integer valuation k by (α+ k− 1). Again this is related to some classical one-parameter orthogonal polynomials.
In the case of the continued fraction (1) related to permutations and Laguerre histories (defined below in section
6), the similar weight α (taking the first choice in the history) corresponds to cycles in permutation and classical
Laguerre orthogonal polynomial L(α)

n (x) with parameter α.
More generally, as mentioned at the end of section 2, many continued fractions expansions can be proved

combinatorially by combining PF fundamental Lemma with some construction of weight preserving bijections
between weighted objects and weighted histories. The “weight α” plays a key role in many such combinatorial
proofs. Other possible weights on histories are very useful, in particular for the case of the Sheffer class of
orthogonal polynomials (see section 6 and [58]).

In this introduction, I have distinguished between the weighted paths, the histories related to the weighted
path, and then the possibility to put some weight on the history. This distinction does not appear clearly in PF
papers, where often the single term “system of path diagram” is used. But nowadays, in many papers the term
“history” appears, in distinction of the term “weighted path” or “system of path diagram”.

6 More combinatorial interpretations of continued fractions

In his seminal paper [18], PF gave many combinatorial proofs for some classical expansions of functions and
power series into analytic continued fractions, using the philosophy of bijection related to the idea of “histories”,
combined with his fundamental Lemma. In particular he extended the above toy example with Hermite histories
and chord diagrams to partitions and “Charlier histories”, corresponding to Charlier polynomials. More generally,
he made an intensive use of the FV bijection [43] between permutations and some histories related to the following
path valuation

ak = k + 1, bk = k + 1, ck = 2k + 2. (9)

This bijection is constructed with the same philosophy than for Hermite histories. The (n+ 1)! permutations
are constructed by using 4 kinds of operators (one for NE step, one for SE step and two for E step), acting on words
(or binary trees) with some empty positions (or “open” edges), each operator is done on a certain “open” position,
and according to the fact that for an elementary step is NE (resp. E, resp. SE) the number of open positions is
increased by one (resp. is invariant, resp. decreases by one). The histories related to these valuations are often
called Laguerre histories, and give a combinatorial proof of Euler continued fraction (1).

Playing with these histories, or putting some restrictions, or putting various kinds of weights (for example
similar q or α weight as described in section 5), PF got in the seminal paper [6] many combinatorial proofs of
analytic continued fractions of the literature, without any calling for
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analytic method as was done for more than two centuries before his seminal paper. The above Hermite and Charlier
histories are particular cases where some restrictions are made on the possible choices. By making more restriction
for the possible choices for the Charlier histories, PF and R.Schott get in [13] a complete combinatorial study of
continued fractions expansions related to some partitions called “non-overlapping” and to Bessel functions. This
class of partitions introduced by PF and his co-author lies somewhere between unconstrained partitions and the
classical noncrossing partitions enumerated by the Catalan numbers.

Another correspondence between analytic continued fractions and combinatorial objects is made in a reverse
way using bijections based on histories. The expansion of a special function or a power series into continued
fraction is supposed to be known, and the bijection with histories gives a combinatorial interpretation of the
special function or the particular power series.

See for example the paper [12] giving, after the combinatorial interpretation of Dumont [40] and Viennot [57],
another interpretation of the Jacobi elliptic functions in terms of alternating permutations. The problem remains
open to give a relation between this interpretation and the others. Also in the paper [16], an interpretation is
given for other elliptic functions, the Dixmionian function sm, cm. Here too, the problem remains open to go in
the reverse way, and give a combinatorial proof for the expansion into continued fractions of these Dixmionian
elliptic continued fractions from the system of differential equations defining these functions.

Other combinatorial consequences of the path interpretation of continued fractions are developed in [10] about
congruence properties.

From the equivalence between continued fractions and orthogonal polynomials described in section 3, the
combinatorial proofs of expansion into continued fractions of functions or power series given above can be rein-
terpreted as combinatorial interpretation (and proof) of the moments of the associated orthogonal polynomials. In
particular, for the following classical orthogonal polynomials:

orthogonal polynomials moments 3-terms recurrence relation
Hermite 1 · 3 · · · (2n− 1) chord diagrams ck = 0, λk = k

Charlier Bn set partitions ck = k + 1, λk = k

Laguerre n! permutations ck = 2k + 1, λk = k2

Table 1

Sheffer polynomials are defined by polynomials having exponential generating function of the following form:

∑
n≥0

Pn(x)
tn

n!
= g(t) exp(xf(t)). (10)

A classical theorem says that there are only five classes of Sheffer orthogonal polynomials, called Hermite,
Charlier and Laguerre (with one parameter α), Meixner I and Meixner II (with two parameters c, δ). These
polynomials play a key role in the series of papers of PF and his coauthors about analysis of integrated cost of
data structures. Roughly speaking, the “Sheffer” property for orthogonal polynomials is equivalent to say that the
3 valuations ak, bk, ck of Motzkin paths are linear expression in k.
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7 File histories and integrated cost in data structures

As said in the introduction, the pioneer paper [1] in 1978 about the analysis of integrated cost in data structures
was the starting point of a beautiful theory in computer science for data structures, and at the same time the
combinatorial theory of analytic continued fractions.

In [42] J. Françon introduced the concept of file history (in French histoire de fichiers). Primitive operations
are of 3 kinds: adding, deleting a key, or asking a question (inspired from the dictionary data structure represented
by a binary search tree). The idea of data history is to keep in memory the exact sequence of operations, up
to an isomorphism of relative values of the different keys. If the k keys are totally ordered, the only pertinent
information is to remember the “position” where the operation is performed, which can be a key itself in the case
of deletion or question about a key (positive query) (with k different possibilities), or an interval (with k + 1

possibilities) in the case of adding a key or a negative query. Starting and ending with an empty data structure, the
total number of such file histories is the sum of weighted Motzkin paths of length n, according to the valuation
ak = k + 1, bk = k, ck = 2k + 1. Using the FV bijection, with a restriction in the construction, gives the number
of such histories as n!, moments of the Laguerre polynomials L(0)

n (x), (instead of (n + 1)!, moments of L(1)
n (x)

for the general case described in section 5).
The idea of file histories is fruitful in the case the algorithms performing the allowed primitive operations use

only comparisons between keys. PF considers the analysis of the average cost of a data structures, integrated over
the set of all possible histories. Under some additional hypothesis called “stationarity” of the data structure, PF
shows that it is possible to give explicit expression for this average integrated cost, as a function of the average
cost of each primitive operation, and of some coefficients given by the combinatorics of weighted Motzkin paths.
These coefficients involve the number of times a primitive operation (add, delete or query) is performed on a file
of size k, over all possible histories. Such coefficients can be computed from the continued fraction interpretation,
using the generating function for weighted paths starting from level 0 and ending at the level k. Classical data
structures are just defined by the possibility function to each primitive operations, which corresponds to a certain
continued fraction and thus a certain family of orthogonal polynomials. Main examples are given on table 2.

data structure possibility function orthogonal polynomials
stack ak = 1, bk = 1, ck = 0 Tchebycheff (second kind)
priority queue ak = k + 1, bk = 1, ck = 0 Hermite
symbol table ak = k + 1, bk = 1, ck = k + 1 Charlier
linear list ak = k + 1, bk = k, ck = 0 Meixner
dictionary ak = k + 1, bk = k, ck = 2k + 1 Laguerre

Table 2

The remarkable fact is that for each classical data structure, such as the five listed on table 1, corresponds a
family of classical orthogonal polynomials. Except for the most simple case of stack, where the moment of the
corresponding orthogonal polynomials are the Catalan numbers themselves, the 4 other data structures involve 4

of the 5 classes of Sheffer orthogonal polynomials.
In the sequel of papers [4], [8], [9], [11], PF and his coauthors make a complete computation of the analysis of

such integrated costs for various data structures. The principal ingredient explained in the fundamental paper [8],
is to give an expression of the (exponential) generating function of the integrated cost in term of the generating
function for the average cost of a
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single primitive operation. The path interpretation leads to a certain expression with an integral and a convolution
product.

The orthogonality of the related polynomials appearing as numerators and denominators of the convergents
(which are the same as the polynomials whose moments are the number of histories) plays a key role. For particular
example, explicit expression for the exponential generating function of each Sheffer orthogonal polynomials is
used and leads to a complete analysis. What a beautiful interplay between computer science, classical analysis
and combinatorics !

Similar continued fraction techniques can also be used for the analysis of the integrated cost of data structures
in the case of bounded number N of keys. The continued fraction becomes finite, with valuation depending on
the size N and the level in the Motzkin path (paper [7]).

In the paper [11], with a simple cost in linear lists analysis reduced to qpi−1 for the choice pi of the corre-
sponding data history, leads PF and his coauthors to introduce a non-classical q-analog of Laguerre polynomials,
as explained in section 4, and get an explicit computation of the variance of the integrated cost. Curiously, this
same q-analog of Laguerre polynomials plays a fundamental role in the recent study of the PASEP model in
physics of dynamical systems (see section 11).

8 From combinatorics to probability theory

In a series of papers (starting with [48]), Karlin and McGregor studies probabilistic birth-and-death process
and showed the strong relationship with orthogonal polynomial theory. A population is increasing or decreasing
according to some rate depending of the size of the population. In discrete time, this process reminds some
Motzkin paths, with some weight on the edges depending of the height elementary step (NE, SE or E). Using
methods such as backward or forward differential equation, Karlin and McGregor gave explicit expression for
some random behavior in terms of integral involving related orthogonal polynomials. Certain ideas underlying
are similar in their spirit to some computations of PF and coauthors related to the analysis of integrated cost in
data structures explained in the previous section. In particular, a general expression for computing the generating
function of weighted paths starting from a certain level k and ending in a level l. It relies on the expression:∑

|ω|=n
Motzkin paths

ν(ω) = a0 · · · ak−1b1 · · · blf(xnPkPl), (11)

where the summation is over all paths with steps NE, SE and E going from level k to level l, {Pn(x)}n≥0
is the sequence of orthogonal polynomials defined by the 3-term recurrence (8) related to the valuation with
λk = ak−1bk, k ≥ 1, and f is the linear functional associated to the orthogonal polynomials. For computation, f
is written in form of an integral with a certain measure dψ. (see section 6).

Following his philosophy, “Discrete and continuous mathematics willingly and harmoniously encounter and

complement”, PF in the paper [14] with F.Guillemin, returns on this birth-and-death classical subject, but having
in mind his discrete (or combinatorial) theory of continued fractions with weighted paths. He shows the power of
discrete thinking by getting new results on this well known and classical topic by introducing a fruitful methodol-
ogy with some morphisms, which make possible to get probabilities results as a consequence of discrete analysis.
This methodology is summarized in the abstract [21] of the talk of his co-author.
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The same philosophy is used in the paper [16], where some urn processes analysis are made using combinato-
rial interpretations (permutations, obtained from certain “histories” related to some Dixmonian elliptic functions)
and from which some analysis of a kind of Yule process is deduced (some particles called foaton and viennon

disintegrate with a certain probability decay law, each particle of one kind giving rise to two particles of the other
kind).

9 Continued fractions for elliptic functions

We just mentioned above the paper [14]. The starting point is the amazing expansion of Dixmioninan functions
into continued fractions with cubic denominators and sextic numerators obtained by Conrad in his thesis [34].
Such functions are related to the cubic Fermat curve x3 + y3 = 1 and, as we say in the section about arithmetic
continued fractions, the amazing Apéry continued fraction for ζ(3) has intriguing similarity with Conrad ana-
lytic continued fraction. PF gives two combinatorial interpretations in terms of permutations of such Dixmionian
functions sm and cm, starting from the system of differential equations for sm and cm, and for the second inter-
pretation, starting from the continued fraction. This second interpretation uses a similar idea as in the paper [12]
interpreting Jacobian elliptic functions in term of the classical alternating permutations going back to D.André in
the years 1880s. The idea is to glue 2 by 2 or 3 by 3 elementary steps in a Motzkin path, in relation with terms of
degree 4 or 6 in the continued fraction.

It seems that the problem remains open to give bijections between the two interpretations of Dixmionian
functions, which would give a combinatorial proof of Conrad continued fraction. The same problem seems to
remain to give a correspondence between the interpretation of Jacobi elliptic functions given in [12] in term of
alternating permutations, and the original combinatorial interpretations given by Dumont [40] or Viennot [57] in
terms of some permutations related to the system of differential equations.

In the spirit of this beautiful paper, PF continues in the paper [17] with R.Bacher, his study of continued
fraction related to elliptic function. It is not frequent to find new continued fractions. Such fraction related to
special functions are rare (perhaps less than 100 from Perron and Wall). PF gave a new and deep continued fraction
related to some elliptic function coming from “pseudo-factorials”, which can be express from the Weierstass
function. We are close to lattice, periodic complex function and number theory.

The methodology is not using combinatorics but using the classical equivalence, due to Rogers and Stieltjes,
between expansion into continued functions and some addition formula of the following type. Let Φ(z) be a
function expressed as an exponential generating series Φ(z) = 1 +

∑
n≥1 Φnz

z/n! and suppose there exist
coefficients {ωi}i≥1 and functions {ϕr}r≥0 of the form ϕr(z) = zr/r! +O(zr+1). The Rogers-Stieltjes addition
formula is of the type

Φ(x+ y) = ϕ0(x)ϕ0(y) +
∑
r≥1

ωrϕr(x)ϕr(y). (12)

Remark the PF gave a combinatorial of this equivalence in his thesis [24] using the geometry of Motzkin paths.
If J(t) is the expansion into Jacobi continued fraction (type (3)) of the ordinary generating function 1 +∑
n≥1 Φnz

n (i.e., the Laplace transform of Φ(z)), then there are simple expressions giving the coefficients ck, λk
of J(t) in terms of the ωi and of the coefficients of zr+1 in the power series ϕ(z). By a heavy use of computer
algebra and heuristic guesses, PF and R.Bacher manage
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to produce such addition formula which leads to a beautiful new continued fraction. Moreover, again with
deep techniques, they give the exponential generating function for the associated orthogonal polynomials, which
belong the family called “elliptic polynomials” (see the book [49]).

In papers [16], [17], PF is opening a new deep field of researches about elliptic functions and polynomials.
The relation with combinatorics has to be explored. The very deep new continued fractions appearing in his two
Happy New Year cards for 2009 and 2010 underlie this promising and unachieved period.

10 Operators, physics and orthogonal polynomials

Finally the paper [18] with P.Blasiak is one of the very last papers of PF. All along this introduction we insist
on the underlying concept of “histories” appearing in most of the 16 papers of this chapter. Histories can be
viewed as sequences of operators with some extra informations. In the toy example of Hermite histories (section
3), there are two operators satisfying the commutation relation UD = DU + I familiar to physicists in quantum
mechanics (creation and annihilation of particles). The algebra generated by this relation has a basis forms by the
monomial DiU j and any word w(U,D) in non-commutative variables can be expressed in a unique way w =

ci,j(w)
∑
i,j≥0D

iU j . This is the well known normal ordering in physics. The paper of P.Blasiak and PF follows
a long list of papers by a group combinatorics and physicists with P.Blasiak (G.Duchamp, K.Penson, A. Horzela,
I.Solomon) about combinatorial properties of the normal ordering, in relation with some combinatorial Hopf
algebra. If Q(U,D) is a polynomial in U and D, one is interested in the generating function of the coefficients in
the normal ordering of the word Q(U,D)n. The most known example is the normal ordering of (UD)n with the
appearance of the Stirling numbers, Bell numbers and set partitions.

All along this introduction, some representations of the algebra defined by UD = DU + I appear in the form
of the operations of a priority queue in computer science, some Polya urns or with the combinatorial construction
with chord diagrams and Hermite histories. Here, PF and P.Blasiak start with the classical representation using
the algebra of polynomial in one variable and the two operators on polynomials: X (multiplying by x) or D
(derivative). They introduce the concept of gates, and for different polynomialsQ(U,D) give generating function,
related to classical objects in enumerative combinatorics and related continued fractions. The spirit of this paper
is in fact combinatorics of differential calculus in relation with continued fraction. This theory developed from the
concept of gates appears to be strongly connected to the combinatorial theory of differential equations developed
by P.Leroux and X.G.Viennot based on enriched increasing trees. Gates appear as an extension of some weighted

increasing tree. Further researches and extensions should be developed.

11 Further researches

Following PF seminal paper [6], X.G.Viennot [58] (summary in [59]) made a complete “combinatorial” theory
of (formal) orthogonal polynomials, starting from scratch, “rewriting” the classical theory (section 3) using only
combinatorial arguments based on weighted paths and histories, in particular starting with a pure combinatorial
proof of the orthogonality of polynomials defined by the recurrence (6) according to the moments defined by (7).
The FV
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bijection leads to complete combinatorial interpretation of the moments of the class of Sheffer orthogonal poly-
nomials.

Convergents of order k of J− and S− continued fractions are particular cases of the socalled Padé approxi-
mants introduced by Padé at the end of 19th century. The idea is to approximate a power series Φ(x) by a rational
fraction Nr/Ds where Nr (resp. Ds) is a polynomial of degree r (resp. s) and where the expansion of the rational
fraction coincides with Φ(x) as far as possible (in general for the first r+ s+ 1 terms). Extending the monograph
[58], E.Roblet gave in [52] a complete combinatorial theory of the classical (in analysis) theory of Padé approx-
imants, with combinatorial extensions to other kinds of continued fraction (L− and tree-like continued fraction).
Summary of this work is given in the abstract [20] of Roblet’s talk.

Other extensions have been made by Roblet in [53] with the use in combinatorics of Tfractions (equivalent
to “Padé approximants in two points”). In the same spirit of Roblet’s monograph [52], D.Drake continues such
combinatorial theory for multiple orthogonal polynomials [39].

In the above papers, intensive use is made of Hankel determinants interpreted by configurations of non-
crossing Motzkin and Dyck paths, using the so-called classical LGV lemma (see for example [31]) relating de-
terminants and weighted non-crossing paths. These determinants play a key role in the so-called qd-algorithm
(or “quotient-difference” algorithm), a classical algorithm in numerical analysis for computing the expansion into
S-fraction of a power series. A simple combinatorial proof, using again the geometry of Motzkin paths, has been
made by Viennot [60], with application to the enumeration of some Young tableaux, as explained in the abstract
[19] of Gouyou-Beauchamps’s talk.

Many works about combinatorial theory of orthogonal polynomials has been made in the last 30 years. There
are two dual points of view: interpretation of the polynomials (coefficients, generating function, combinatorial
proof of various formulae, . . . ) or combinatorial interpretation of the moments of the polynomials, in the spirit of
the work of PF and Viennot [58]. Following this moments interpretation, many works has been done, in particular
by J.Zeng and his students in Lyon and co-authors. For example, mention the beautiful paper [46] about addition
theorems via continued fractions, ultra spherical and q-Jacobi (and more) polynomials.

Recently, some works have been made in other parts of theoretical physics using the combinatorics of con-
tinued fraction with the geometry of paths. Mention the work of J.Bouttier and E. Guitter [32] about continued
fractions appearing in the context of random planar maps, and the paper [38] (the first of a series) by Di Francesco
and R.Kedem about Q-systems in relation with the new domain of cluster algebra introduced by S.Fomin and
S.Zelevinsky. Deep combinatorial manipulations of paths and continued fractions lead to a proof a positivity
conjecture.

In the same spirit of section 10 about the relation between combinatorics, physics, operators and orthogonal
polynomials, a series of researches is done around the PASEP (partially asymmetric exclusion model). It is a toy
model in the physics of dynamical systems far from equilibrium. The computation of the stationary probabilities is
based on the PASEP algebra, i.e., the algebra with by two generators D and E satisfying the commutation relation
DE = qED + E + D. Many recent works have done by combinatorists (for example: [35], [36], [61]), giving
an interpretation of these probabilities in terms of some “tableaux” (permutations tableaux, alternative, staircase

and tree-like tableaux). For the PASEP model with 3 parameters α, β, q, some q-Laguerre polynomials play a
crucial role. The moments of these orthogonal polynomials are exactly the weight of these tableaux (with α, β,
q). Another approach uses the q-Hermite introduced above. Behind this approach are related continued fractions.
These q-Laguerre polynomials (and also q-Hermite) are exactly the same as the polynomials introduced by PF for
the integrated cost of
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linear lists [11] and mentioned in sections 4 and 7 as the “natural” q-weight for Laguerre and Hermite histories.
Thus, the spirit of PF work on continued fractions is underlying all these works over a period of 30 years,

with these unexpected apparitions of continued fractions in algebra, analysis, physics and probability theory, with
strong connections with classical orthogonal polynomials.
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[28] (with Joaquim Gabarró and Helmut Pekari) Analytic urns. 2005

16



[29] (with Philippe Dumas andVincent Puyhaubert) Some exactly solvable model of urn process theory, 2006.

[30] (with Thierry Huillet) Analytic combinatorics of Mabinogion urn. 2008.

Vol 5, Ch 6, on Number theory, see the introduction

other references

[31] M. Aigner and G.M.Ziegler, Proofs from the BOOK, Springer Verlag, Heidelberg,1998, 4th ed. 2009.

[32] J. Bouttier and E. Guitter, Planar maps and continued fractions, Comm. Math. Phys. 309:3 (2012) 623–662.

[33] T.S. Chihara, An introduction to Orthogonal Polynomials, Gordon and Breach, New-York, 1978.

[34] E. van Fossen Conrad, Some continued fraction expansions of Laplace transforms of elliptic, functions, PhD
Thesis, The Ohio State University, 2002.

[35] S. Corteel, R. Stanley, D. Stanton and L. Williams, Formulae for Askey-Wilson moments and enumeration
of staircase tableaux, Trans. of the AMS, to appear (2011).

[36] S. Corteel, M. Josuat-Vergès L.K. Williams, The Matrix Ansatz, Orthogonal Polynomials, and Permutations,
Adv. in Appl. Maths, 46 (2011), 209–225.

[37] A. de Medicis and X.G.Viennot Moments des q-polynômes de Laguerre et la bijection de Foata- Zeilberger,
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