• XAVIER VIENNOT
  • Foreword
    • Preface
    • Introduction
    • Acknowledgements
    • Lectures for wide audience
  • PART I
    • Preface
    • Abstract
    • Contents
    • Ch0 Introduction to the course
    • Ch1 Ordinary generating functions
    • Ch2 The Catalan garden
    • Ch3 Exponential structures and genarating functions
    • Ch4 The n! garden
    • Ch5 Tilings, determinants and non-intersecting paths
    • Lectures related to the course
    • List of bijections
    • Index
  • PART II
    • Preface
    • Abstract
    • Contents
    • Ch1 Commutations and heaps of pieces: basic definitions
    • Ch2 Generating functions of heaps of pieces
    • Ch3 Heaps and paths, flows and rearrangements monoids
    • Ch4 Linear algebra revisited with heaps of pieces
    • Ch5 Heaps and algebraic graph theory
    • Ch6 Heaps and Coxeter groups
    • Ch7 Heaps in statistical mechanics
    • Lectures related to the course
  • PART III
    • Preface
    • Abstract
    • Contents
    • Ch0 overview of the course
    • Ch1 RSK The Robinson-Schensted-Knuth correspondence
    • Ch2 Quadratic algebra, Q-tableaux and planar automata
    • Ch3 Tableaux for the PASEP quadratic algebra
    • Ch4 Trees and tableaux
    • Ch5 Tableaux and orthogonal polynomials
    • Ch6 Extensions: tableaux for the 2-PASEP quadratic algebra
    • Lectures related to the course
    • References, comments and historical notes
  • PART IV
    • Preface
    • Introduction
    • Contents
    • Ch0 Overview of the course
    • Ch1 Paths and moments
    • Ch2 Moments and histories
    • Ch3 Continued fractions
    • Ch4 Computation of the coefficients b(k) lambda(k)
    • Ch5 Orthogonality and exponential structures
    • Ch6 q-analogues
    • Lectures related to the course
    • Complements
    • References
  • Epilogue

The Art of Bijective Combinatorics    Part I
An introduction to enumerative, algebraic and bijective combinatorics

The Institute of Mathematical Sciences, Chennai, India  (January-March 2016)

Ch 0  Introduction to the course

    5 January 2016
slides_Ch0     (pdf   25 Mo)            
video Ch 0 link to YouTube       (1h 10mn)

This video of Chapter 0, Part I of ABjC, introducing enumerative, algebraic and bijective combinatorics 
is available here on the Chinese website bilibili with subtitles in Chinese thanks to Professor Shishuo Fu.

enumerative combinatorics 3    0:50
an example with Young tableaux 5    2:08
Hook-length formula 10    6:12
another example with binary trees, the use of ordinary generating functions  19      9:34
an example with alternating permutations, the use of exponential generating functions 35     17:05
bijective combinatorics, example: planar maps 42    29:35
bijective proof of an identity, example RSK  48     35:10
algebraic combinatorics 55      39:50
the bijective paradigm 62    43:55
example: Mehler identity for Hermite polynomials 64    45:20
identities, bijections, « bijective tools »  84     55:41
example: hook-length formula and number of tilings of the  Aztec diagram under the same roof 89    59:33
another example: heaps of pieces 95    1:04:11
map of the course 97     1:05:31
other courses    98     1:08:50
the end 98      1:09:52  

some reference:
A paper( in french) introducing enumerative, algebraic, bijective ... combinatorics from elementary to recent researches,    

“Enumérons ! (De la combinatoire énumérative classique aux nouvelles combinatoires : bijective, algébrique, expérimentale, quantique et … magique)”,
article dans “Leçons de mathématiques d’aujourd’hui ”, vol 3,  éds. Eric Charpentier et Nicolas Nikolski,  Cassini, Paris, 2007, pp 165-238.

The  playlist from matsciencechannel of the 17 videos of this course is here