The Art of Bijective Combinatorics Part III
The cellular ansatz: bijective combinatorics and quadratic algebra
The Institute of Mathematical Sciences, Chennai, India (January-March 2018)
Chapter 6 Extensions: tableaux for the 2-PASEP quadratic algebra
March 15, 2018
slides of Ch 6 (pdf, 35Mo )
video Ch6: link to Ekalavya (IMSc Media Center)
video Ch6: link to YouTube
video Ch6: link to bilibili
Reminding the essential of the cellular ansatz 3 0:29
The 2-species PASEP 12 7:23
Matrix ansatz for the 2-species PASEP 14 12:26
Rhombic alternative tableaux (RAT) 17 15:44
the diagram Gamma(X) associated to a word X 20 16:33
West- and- North strips associated to a tiling T of Gamma(X) 22 18:09
definition of a rhombic alternative tableau (RAT) (associated to a tiling T) 23 18:40
the weight of a RAT 25 20:33
proposition: the weight generating function does not depend of the tiling 28 25:24
a flip in a tiling 29 26:58
weight preserving bijection between two RAT's associated to two different tilings T and T' 30-31 27:14
Combinatorial interpretation of the stationary probabilities of the 2-PASEP 32 29:10
Some remarks 34 31:06
The 2-PASEP quadratic algebra 43 34:38
Planarization of the rewriting rules 49 38:10
An example 52 39:45
Combinatorial interpretation of the stationary probabilities (proof) 81 43:39
Enumeration of rhombic alternative tableaux 84 46:27
assemblées of permutations enumerated by Lah numbers 85 46:51
formula for the partition function with parameters alpha and beta 86 51:08
Assemblées and species (remindng BJC I, Ch3) 87 52:46
Proof of the formula for Lah numbers 95-98 56:58
From assemblées of permutations to rhombic alternative tableaux 99 58:05
the exchange-fusion algorithm for assemblées of permutations, defintion: 106,107,11 1:03:27
an example 111 1:06:09
interpretation of the parameters alpha and beta 114-115 1:06:42
visualizatinon of the algorithm with network of blue, green and red threads 117-119 1:07:25
The inverse algorithm: from rhombic alternative tableaux to assemblées of permutations 120 1:08:03
Bijection "assemblées of permutations" -- (subset of r elements among n) X (r-truncated subexceedant functions) 133 1:09:13
interpretation of the formula for the partition function with two parameter alpha and beta 142-143 1:12:52
Further enumerative results 144 1:13:27
Tree-like rhombic tableaux 146 1:13:41
Relation with Koorwinder-Macdonald polynomials 155 1:14:15
rhombic alternative tableaux with staircase shape 158 1:17:12
bijection rhombic alternative tableaux -- rhombic alternative tableaux with staircase shape 159 1:17:32
the 2-PASEP model with 5 parameters, interpretation with rhombic staircase tableaux 165 1:18:40
Koorwinder moments 167 1:20:00
Expression of the partition function of the 5 parameters 2-PASEP model with Koorwinder moments 168 1:20:34
(from Corteel, Mandelshtam, Williams)
analogue of Jacobi-Trudi identities (Schur functions) for Koorwinder polynomials and its moments 169 1:22:19
The end of the bijective course III 170 1:23:04
The godess Saraswathi 173 1:25:56