• XAVIER VIENNOT
  • Foreword
    • Preface
    • Introduction
    • Acknowledgements
    • Lectures for wide audience
  • PART I
    • Preface
    • Abstract
    • Contents
    • Ch0 Introduction to the course
    • Ch1 Ordinary generating functions
    • Ch2 The Catalan garden
    • Ch3 Exponential structures and genarating functions
    • Ch4 The n! garden
    • Ch5 Tilings, determinants and non-intersecting paths
    • Lectures related to the course
    • List of bijections
    • Index
  • PART II
    • Preface
    • Abstract
    • Contents
    • Ch1 Commutations and heaps of pieces: basic definitions
    • Ch2 Generating functions of heaps of pieces
    • Ch3 Heaps and paths, flows and rearrangements monoids
    • Ch4 Linear algebra revisited with heaps of pieces
    • Ch5 Heaps and algebraic graph theory
    • Ch6 Heaps and Coxeter groups
    • Ch7 Heaps in statistical mechanics
    • Lectures related to the course
  • PART III
    • Preface
    • Abstract
    • Contents
    • Ch0 overview of the course
    • Ch1 RSK The Robinson-Schensted-Knuth correspondence
    • Ch2 Quadratic algebra, Q-tableaux and planar automata
    • Ch3 Tableaux for the PASEP quadratic algebra
    • Ch4 Trees and tableaux
    • Ch5 Tableaux and orthogonal polynomials
    • Ch6 Extensions: tableaux for the 2-PASEP quadratic algebra
    • Lectures related to the course
    • References, comments and historical notes
  • PART IV
    • Preface
    • Introduction
    • Contents
    • Ch0 Overview of the course
    • Ch1 Paths and moments
    • Ch2 Moments and histories
    • Ch3 Continued fractions
    • Ch4 Computation of the coefficients b(k) lambda(k)
    • Ch5 Orthogonality and exponential structures
    • Ch6 q-analogues
    • Lectures related to the course
    • Complements
    • References
  • Epilogue

The Art of Bijective Combinatorics    Part I
An introduction to enumerative, algebraic and bijective combinatorics

The Institute of Mathematical Sciences, Chennai, India  (January-March 2016)

Ch 4   The   n!  garden
Ch 4a

 16  February 2016
slides_Ch4a    (pdf  18 Mo)      
video Ch4a  link to youTube     (1h 26mn)
video Ch4a  link to bilibili
permutations  (very)  classic  3  0’  28’‘   video
    the bijection  cycles -- left to right minimum elements  7  3’  30’‘   video
    exercise: analysis of the algorithm finding the minimum of a sequence  12  8’  7’‘    video
    rises and descents  16  12‘  31’‘    video
    exercise: Frobenius formula relating Eulerian polynomials and Stirling numbers  17  14’  32’‘   video
    excedances  18  16’  2’‘    video
    up-down sequences of a permutation  21  19’  32’‘    video
    exercise: algorithm computing the number of permutation with given up-down sequence  22  20’  33’‘   video
inversion table, q-analogue  23  24’  29’‘   video
    sub-excedant  functions  24  24’  42’‘   video
    q-analogue of n!  25  25’  51’‘   video
    Rothe diagram  28  29‘  1’‘    video
    inversion table of a permutation 29  29’  50’‘  video
reverse bijection and q-analogue of histories  33  32’  47’‘   video
the maj index  50  38’  51’‘     video
    q-histories for the maj index  52-72  40’  34’‘   video
the philosophy of «histories» and its q-analogs  46’  11’‘   video
increasing binary trees  74  48’  05’‘    video
    projection of an increasing binary tree 75  48’  23’‘   video
    «déployé» of a permutation 76  49’  24’‘   video
    x-factorisation  77  50’  24’‘   video
    peaks, valleys, double-rises, double-descents  79  54’  13’‘   video
    lr-min, rl-min elements and left and right branches in increasing binary trees  86  56’  39’‘    video
    exercise: hook length formula for increasing binary trees  90  58’  15’‘   video
    exercise: déployé of uv from the knowledge of the déployés of u and v  91  59‘  55’‘    video
    exercise: canopy and up-down sequence  92  1h  1’  33’‘   video
assemblée of increasing arborescences  95  1h  3’  35’‘    video
    exercise:  1-2 increasing arborescences  97  1h  6’  52’‘   video
    exercise: Jacobi permutations  98  1h  8’  5’‘   video
computer science: binary search trees  103  1h  13’  27’‘     video
    from a permutation to a binary search tree  104-112  1h  13’  40’‘   video
    analysis of the insertion in a binary search tree  115  1h  16’  47’‘   video
the end  121  1h  26’  38’’

Ch 4b

18  February 2016
slides_Ch4b       (pdf  23 Mo)      
video Ch4b  link to YouTube   (1h 18mn)
video Ch4b  link to bilibili
Laguerre histories  3  0’  26’‘   video
    Laguerre histories: definition  0’  32’’  video
    bijection Laguerre histories -- permutations: description with binary trees  11-21  4’  29’’  video
    bijection Laguerre histories -- permutations: description with with words  23-33  9’  0’’  video
    reciprocal bijection permutations -- Laguerre histories  34  12’  57’‘   video
    x-decomposition of a permutation  36  14‘  25’’  video
    description with the pattern  (31-2)  40  18‘  52’‘   video
relation with (formal) orthogonal polynomials  41  24’  53’’  video
    definition of a sequence of orthogonal polynomials  42  25’  21’’  video
    moments  43  26’  59’’  video
    Favard theorem  44  27’  43’‘   video
    interpretation of the moments with weighted Motzkin paths  45-47  29’  51’’  video
Laguerre histories and moments of Laguerre polynomials  48  31’  57’’  video
weighted Laguerre histories  54  35’  37’’  video
    Laguerre polynomials with weight  alpha  55  36’  10’’  video
restricted Laguerre histories  60  41’  16’’  video
    moments with weight beta  66  43’  53’’  video
    bijection for  beta=2   67  44’  04’‘   video
Hermite histories  68  44’  27’’  video
    moments for Hermite polynomials  69  44’ 47’’  video
    Hermite histories: definition  70  45’ 44’‘   video
    bijection  Hermite histories -- chord diagrams  72-77  47’ 36’‘   video
q-analogues of Hermite histories  78  50’ 31’’  video
    nestings  80-84  51’ 49’‘   video
    crossings 85-86  52’ 58’’  video
    exercise: symmetry of the (q,t) polynomials  crossings-nestings  89  54’ 51’‘   video
q-analogues of Laguerre histories  90  55’ 30’‘   video
complements: q-Hermite and q-Laguerre II  95  59’  9’’  video
    moments of q-Laguerre II  96  59’ 17’’  video
    moments of q-Laguerre I  98  1h 1’ 33’‘   video
    relation with the PASEP model in physics  99  1h 1’ 52’’  video
    moments of q-Hermite I  100  1h 3’ 30’’  video
    moments of q-Hermite II  101  1h 4’ 12’’  video
    the philosophy of «histories» and its q-analogues  1h 4’ 37’’  video
complements: Laguerre histories and Scheffer orthogonal polynomials  103  1h 6‘ 48’’  video
complements: Baxter permutations107  1h10’ 8’’  video
    bijective proof for the number of Baxter permutations using Laguerre histories 111-116  1h 12’ 22’’  video
    triple of non-intersecting paths  117-122  1h 15’ 25’’  video
the end 124  1h  18’  48’’

Ch 4c

23 February 2016
slides_Ch4c   (pdf  30Mo)              
video Ch4c  link to YouTube       (1h 13mn)
video Ch4c  link to bilibili
Young tableaux  3  50’’  (image is coming only after 1’  10’’)  video
Hook-length formula  8  2’ 34’’  video
An introduction to RSK  17  5’ 7’’  video
RSK with Schensted insertions  23  10’ 18’’  video
the group of permutations  48  16’ 16’’  video
a geometric version of RSK with  «light» and «shadow lines»  52  17’ 35’’  video
some exercises  76  24’ 59’’  video
more about group theory (representation theory)  82  30’ 47’’  video
proof of the equivalence  insertion -- geometric construction  88  35’ 55’’  video
jeu de taquin  95  (see  Ch4c complements  2)  39’ 36’’  video
duality 96  (see Ch4c complements  9)  47’ 16’’  video
increasing and decreasing sequences  97  53‘ 54’’  video
Knuth’s transposition 107  (see  Ch4c complements  55)  59’ 48’’  video
plactic monoid  108  (see  Ch4c complements  60)  1h 2’ 40’‘   video
Schur  fonctions  109  (see  Ch4c complements  68)  1h8’ 35’‘   video
the end  110  1h  13  14

complements to Ch 4c

slides_Ch4c-complements             (pdf  17 Mo)
jeu de taquin  2  40’ 7’’ video
duality  9  47’16’’  video
            dual of a Young tableau  19  49’ 48’’  video
Knuth’s transpositions  55  59’ 48’’  video
plactic monoid  60  1h 2’ 40’’  video
Schur functions  68  1h 8’ 35’’  video
the end  74  1h  13  14

Ch 4d

25 February 2016
slides_Ch4d     (pdf 14 Mo)          
video Ch4d  link to YouTube
video Ch4d  link to bilibili
«local» algorithms on a grid or «growth diagrams»  3  0’ 35’’  video
        posets and the Young lattice  12-15  11’  56’’  video
proof of the equivalence local RSK and geometric RSK  28  19’ 57’‘   video
complement: combinatorial representation of the algebra UD=DU+Id  45  30’ 30’’  video
oscillating tableaux  51  37’ 16’’  video
        bijection oscillating tableaux - rook placements - Hermite histories - chords diagram 52-55  38’  1’’  video
        «2-colored oscillating tableaux»  56  49’ 57’’  video
        rooks placements on a staircase and set partitions  58  56’ 10’’  video
        vacillating and hesitating tableaux  62  59’ 16’’  video
RS to RSK, extensions to matrices  63  1h  2’ 17’’  vide
some bibliography about RSK  73  1h 9’ 49’’  video
the end  76  1h  10’  43’’  video

complements to  Ch 4d

slides_Ch4d-complements         (pdf  17 Mo)
the PASEP  (Partially asymmetric exclusion model)  2  1h 10’ 43’’  video
        alternative tableaux  4-5  1h12’ 0’’  video
        stationary probabilities with alternative tableaux  10  1h15’ 50’’  video
        permutations tableaux  11  1h17’ 25’’  video
        q-Laguerre  14  1h 20’ 31’‘   video
        (the philosophy of)  the cellular ansatz  18  1h 22’ 52’’  video

complements for Ch 2 and Ch 4:

posets and lattices:  2^n, Catalan, n!  19  1h  24’  2’‘   video
        Boolean lattice  22  1h 24’ 22’’  video
        Canopy, increasing binary tree, permutations and up-down sequences  23  1h 24‘ 50’‘   video
        weak Bruhat order on permutations  24  1h 25’ 9’’  video
Tamari lattice 26  1h 26’ 41’’  video
        definition with binary trees  27  1h 26’ 45’’  video
        Boolean, Tamari and permutations lattice  30-33  1h 28’ 35’’  video
Tamari lattice with Dyck paths  34  1h 29’ 44’’  video
Tamari lattice with triangulations  41  1h 30’ 26’’  video
realization of the associahedron  (as a convex polytope)  44  1h 30’ 58’‘   video
        Loday’s  realisation with binary trees  46  1h 31’ 32’‘   video
3 geometric structures: hypercube, associahedron and permutahedron  51  1h 33’ 41’’  video
the end 58  1h  34’ 42’’